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WEIGHTED LEAST SQUARES FIT OF A REAL TONE TO DISCRETE DATA,
BY MEANS OF AN EFFICIENT FAST FOURIER TRANSFORM SEARCH

INTRODUCTION

Estimation of the parameters of a tone with unknown amplitude, frequency,
and/or phase has attracted considerable attention; see, for example, [1-9].
However, fitting data with a single pure complex tone leads to a simpler
search problem than fitting with a real tone (as will be demonstrated in the
next section). In particular, fitting with a complex tone was considered in
[1-5, 7], while fitting with real tones has been the subject of [6, 8, 9].
However, the frequency of the tone was assumed known in [6, 8], whereas it had
to be estimated in [9].

Here we will extend the results in several directions for the case of
fitting real data with a real tone. First, arbitrary real weighting of the
errors at each discrete instant are incorporated. Second, the function that
must be searched for a maximum is manipulated into a form which requires that
only two FFTs of two real sequences be conducted. Third, these two operations
are combined into one FFT of a complex sequence, the outputs of which are
decoupled in a very efficient manner, in order to yield the desired search
function. Fourth, parabolic interpolation of the three outputs in the
neighborhood of the search maximum is employed in order to give a refined
estimate of the tone frequency. Finally, a minute search for the best tone
frequency is conducted, the extent of which is left up to the user. The end
result of this investigation is a program for conducting an efficient and fast
fine-grained search for the determination of the unknown amplitude, frequency,
and phase of the best-fitting real tone to a given set of discrete real data
and subject to any error weighting of interest.

This procedure is applicable to arbitrary data record lengths. Also, no
assumptions about the statistics of any additive noise, that may be present in
the data record, are made. However, when the available data record is the
result of a pure tone and additive zero-mean Gaussian noise, the procedure can

be interpreted as maximum likelihood estimation [9].
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ERROR MINIMIZATION

Before we begin the detailed investigation of fitting a real tone to real
data, we first consider the simpler problem of fitting a pure complex tone.

This will serve as a comparison procedure and will back up the statement made
in the Introduction.

COMPLEX TONE

The discrete data available consist of N values {xk}, taken at
increment a. If the data are complex and we fit the data with a pure complex
tone, we must address the problem of minimizing the weighted squared error

E = Ewk‘xk - a exp(imkA)lZ , (1)
k

where the summation on k is taken over all nonzero summands. Normally, the
data {xk} and real weights {wk} will be taken to be nonzero over the range
1- < k < N; however, the presentation allows for any range of the variable k.
The parameter « in (1) is the complex amplitude, and w is the pure tone
(radian) frequency, which is presumed real.

If we consider w given for the moment in (1), the best choice of a to
minimize error E is given by

a, = zwk X exp(—imkA)/Zwk . (2)
k

K

Substitution of this result for a in (1) results in error

tlo) = 2wl -
kK

:E_wk X exp(—ika)lz//<§Ewk . (3)
k k
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This error is minimized by choosing frequency w to maximize the quantity

IZE‘ W X, exp(-iuka) 2 , (4)
k

Ahich is the standard magnitude-squared Fourier transform of the weighted
data. Thus, direct application of an FFT is a good procedure to apply to this
problem and has been so employed in the past [5]. Since (4) has period 2x/a
in w, there is no need to compute (4) except for the range -m < wA < w.

REAL TONE

We now restrict consideration to the case of major interest here, namely,

real data {xk}, and attempt to fit it with samples of a pure real tone, that
is,

a cos(wka) + 8 sin(wka) . (5)

Here, a and 8 are the real coefficients of the in-phase and quadrature
components of the tone. If we let "normalized frequency"

the weighted squared error to be minimized is

E Ewk [x, - a cos(ak) - 8 sin(ak)]2 ] (7)
k

For later use, we define the two Fourier series:

=
—
o
~—
l

= jgwk exp(-iuk) ,
k

L(u) = Ewk X, exp(-iuk) . (8)
<
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The first is the window associated with weights {wk}, while the latter is
the Fourier transform of the weighted data.

The variable a appearing in (7) will be called the "frequency" of the
tone. If we consider frequency a given for the moment, setting the partial
derivatives of error E with respect to « and 8, both equal to zero, results in
the pair of simultaneous linear equations for their optimum values:

Alp oo YA By = Le(a)

A + A

il
|
—
-
—
[+¥)
—~—

12 % " A2z 8 (9)
Here sub r and i denote real and imaginary parts, respectively. We also have

the scale factors expressible in the forms

Ayq = Zwk cosz(ak) = %[N(O) + wr(Za)] .
k

Ayp = Zwk sinz(ak) = %@(O) - Nr(Za)] >
k

W.(2a) , (10)

[T

A12 L :Ewk cos(ak) sin(ak) = -
Kk

where we have made extensive use of (8). Solution of (9) yields for the tone
coefficients,

AL (a) + A, L.(a)

. 22°r 1273
o~ 2 2
A11h22 - Ay
-Apti(a) — AL (a)
8 = . (11)
0 A A — A
11822 ~ A1

The use of (9)-(11) in error (7) now results in modified error
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E(a) = ZEFWk [xk - a, cos(ak) - B, sin(ak)]2 =

K

. :EWK [x, - a, cos(ak) - 8 sin(ak)] x, =

= :El"k XE - B(a) , (12)
K

where we define real function

B(a) = a, L.(a) - 8, L;(a) =

2 2
) Azer(a) + 2A12Lr(a)Li(a) + AllLi(a) e
- ) .
MiPaz - A

This quantity, which must now be maximized by choice of a, was previously
encountered in [9; (10)], but limited there to the case of equal weights
fwk}. We concentrate henceforth on function B(a), aware that we can always
return to error E(a) by means of (12).
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MANIPULATIONS OF B(a)
In this section, we derive alternative forms, properties, and
interpretations of the function B(a). Tne weighted squared error is directly

related to B(a) by means of (12).

ALTERNATIVE FORM FOR B(a)

A more useful and compact form for B(a) in (13) is possible. Reference

to (10) reveals that the denominator of (13) is simply

o) - [al] (14)

Similarly, use of (10) allows development of the numerator of (13) according to

1000) - W (2a)] Lo(a) - W (2a)L (a) (a) + 5[H(0) + W (2a)]L{(a) =

%N(O)le(a)\ - Hu(2a)l(a) + 2w (2a)L (a)L(a) - W (2a)LE(a)] -

Loy |(a)| - & refu™(2a) %)} (15)

Coupling (14) and (15) together, the expression in (13) becomes

3(a) < 2 4Ol - relu’ 2a)P(a)} | (16)
W (0) - |w(2a)

The required quantities here are available from (8) as

W(2a) = Zgwk exp(-i2ak),
K
L(a) = Ziwk Xy exp(-iak) . (17)
k
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It is immediately obvious from (16) that B(a) can never be negative
(presuming that tnhe weights are nonnegative).

The general result for B(a) in (16) is the quantity that must be

maximized by choice of frequency a. However, it is interesting to observe
that for frequencies where the window is small, that is,

lw(Za)\ << W(0) , (18)

then (16) simplifies to

Bl —fWILZ(a)\ - ot

ziwk X exp(—iak)‘2 . (19)
K

which is identical to (4). Thus, for those frequencies where (18) is true,
the function B(a) is approximately the magnitude-squared Fourier transform of
the weighted data; this corresponds to values of a not near multiples of .

PROPERTIES OF B(a)

Since W(2a) has period = in a, while L(a) has period 2« in a, the
function B(a) in (16) must have period 2r in a; that is,

B(a + 2n) = B(a) . (20)

But at the same time, we have even property

* *
because L(-a) = L (a), «(-2a) = W (2a), using the realness of sequences

{w} and ka}. What this means is that we only need to
compute B(a) for D <a< n, (22)

since all other values can be obtained therefrom. Reference to (6) reveals
that w is being varied over the range (0, =/a), or that cyclic frequency

f = w/(2n) is varying over (0, .5/a). This latter range extends up to the
Nyquist frequency, as expected.



TR 7785

VALUE OF B(a) ASa »0

If we substitute a = 0 in (16), we get B(0) = 0/0, which is
indeterminate. Hence, for small a, we expand (17) according to

. 2
W(2a) wo - 12awl - 2a w2 X
. 1 2
L(a) ~ Ly - faly -5 a"L, , (23)
where n-th order "moments"
n
wn = ziwk k™,
k
n
L, = > ox k" (24)
K

Substitution of (23) in (16) and simplification yields

2 2
WALS = 2WqLiLy + WL
Jin B(a) = 0L 1“1 o2 20
as0 Wy - WS

This limiting result is the same value that is attained as if we
minimized weighted error

£ = Dw [x, - u- w1?, (26)
K

by choice of constant value p and linear trend vk. In fact, direct
minimization of (26) yields optimum coefficients

oLy - Wilg Woby - Wik, -
=S, Yy =
WoWp = Wy Wy - W)

o)

and associated minimum error

8
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2 2
WL, - 2W.L.L~r + WL
2 0°1 17170 270
Ey = ZEWK X e w2 . (28)
k 072~ "M

As claimed above, the last term in (28) is precisely the result given by (25);
see (12) also. Thus, the limit, as a » 0, of model fit (7) is the best-
fitting constant plus linear trend to the given data. This can be obtained
from (7) only if quadrature coefficient 8 behaves as 1/a as a » 0. Indeed, in
a later section, we will show that this is precisely the behavior of g8 in this
limit. Thus, setting a = 0 in (7) and keeping 8 finite does not lead to the
result in (25) and (28), but instead gives only the best fitting constant. We
will allow the more general fit afforded by (26) here, and will utilize the
value achieved by (25) in the limit, as a > O.

VALUE OF B(a) AS a » =

If we substitute a = = in (16), there follows B(x) = 0/0, which is
indeterminate. However, if we let a = = + 3, we see from (17) that

~

W(2a) = W(2r + 2a) = W(2a) ,

-~

L(a) = L(w *+ a) = :Exdk (—1)k Xy exp(—i;k) . (29)
k

Thus, W(23) behaves the same about ¥ = 0 as W(2a) does about a = 0. Also, the
last term in (29) behaves the same about ¥ = 0 as L{a) does about a = 0,
provided that each data element X, is replaced by (—1)k Xy Thus, (25)

can be immediately utilized to yield the result

<7 = 7
Wily - 2W,L. L, * W,L
1im B(a) = 2 110 20 (30)
where moments (24) have been replaced by
5 K n
[ = 2 (1) W X, K (31)



TR 7785

Physical interpretation of result (30) is similar to that given earlier
for a » 0 in (25)-(28). Namely, in the limit as a » =, the best constant plus
linear trend is fitted to alternating data {ﬂ—l)k xk}. Again, this requires
quadrature coefficient 8 in fit (7) to behave like 1/(a - =) as a » .

EXAMPLE OF EQUAL WEIGHTS

Let weights

1
we=x Ffor lc<k<N. (32)
Then window (17) becomes

W(2a) = sin(Na)

= m eXp(—i(N + l)a) . (33)

This is the example considered in [9].

The moments (24) for this case are given by

=
[an]
|
[
-
=
—
[}
N
—
=
+
(SN
S
-
N
1]
o —
——
=
+
—
o
—
o
=
+
-
g
-

The numerator of (25) is then

1 2
Ll - (N + 1)L1L + E(N + 1)(2N + 1)L0 =

0

10
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Then (12), (25), and (34) yield

2 2
. 1 § 2 1 § 12 :E N+ 1
;;8 s N " T ? [k Xk] i m[ Xk( -2 >t ’

k
(36)

which can be recognized as the minimum error for the best-fitting constant
plus linear trend to data {}k}.

11
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IN-PHASE AND QUADRATURE COEFFICIENTS
Since the modeling waveform in (7) is
a cos(ak) * g sin(ak) = Refka - ig) exp(iak)} , (37)

the complex coefficient or strength of pure complex tone exp(iak) is a - i8.

From (11) and (10), the numerator of ki ig, is expressible as

A22Lr(a) + AlZLi(a) + iAllLi(a) + iAler(a) =

- 1T0) - W (2a)]L (a) + i5[u(0) + W _(2a)]L,(a) +

+i(~%“#2ﬂ[gia)—iL#aq )

*

- 3 W(0)L(a) - 3 W(2a)L'(a) . $2H8)

Combining this with the denominator previously computed in (14), we have for
the optimum complex coefficient,

W(0)L(a) - W(2a)L™(a) .
W (0) - |W(2a)

a, - 18, = 2 (39)

0

For frequencies a such that the window is small relative to the origin
value (see (18)), (39) simplifies to the approximate result

a, - 18,% 2L(a) =2 zwk x, exp(-iak) , (40)
K

which is just the Fourier transform of the weighted data.

If only the phase of the real tone is of interest, (39) indicates that

12
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arg(ay - 18,) = arg(W(0)L(a) - W(2a)L (a)) . (41)

[f frequency a is known, this result is directly applicable; but if a is
unknown, the value a that maximizes (16) must be used.

NORMALIZATION OF WEIGHTS

dithout loss of generality, the sum of the weights {wk} can be set
equal to unity; that is, set

Wo) = Dw = 1. (42)
K

Then the complex coefficient in (39) reduces to

L(a) - W(2a)L"(a)

a - ig_ =2 (43)
Sl 1 - Jw%(2a)]

while the maximizing function B(a) in (16) becomes
B(a) = 2 le(a)l - Re {w*(Za)Lz(af} . (44)

1 - |W(2a)]

This slightly reduces the number of computations that have to be conducted and
has been adopted in the program written here. This scaling is also retained
in the following subsection.

INTERPRETATION OF (43)
An alternative form for coefficient (43) is

. L(a) - W(2a)L(-a)
a_ - =2
o~ 1 - [W(a)|

13
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where we utilized the realness of data {XKI and weights {wk}. This result
can be interpreted as follows: the term

ZE X exp(-iak) (46)
k

is an estimate of the complex strength of the positive-frequency complex
exponential exp(iak) in the real data {xé}, as modified by the weights.
Similarly, 2L(-a) estimates the strength of the term exp(-iak) in the real
data. The window W(2a) measures the amount of spillover from frequency -a to
frequency a, that is, at separation 2a, due to the weights {wé}. This
fraction (including phase information) of the spillover from negative
frequencies to positive frequencies is subtracted from strength 2L(a).
Finally, the denominator factor 1 - lw2(2a)l renormalizes the remainder
according to the fractional spillover.

To justify this last scale factor, suppose that the data {xk] contain a
pure real tone at precisely the frequency a; that is, let

x
]

= o, cos(ak) * s sin(ak) =

Re{ - 13 exp(iak)} . (47)

Then (46) yields

2Ll(a) = :E\Nk[ao(exp(iak) + exp(-iak)) - iBo(exp(iak) - exp(-iak))Jexp(-iak) =
k

= a (1 * W(2a)] - g (1 - W(2a)] (48)
Therefore,
2L(-a) = 2L7(a) = a (1 * W(2a)] + s [1 - W(2a)] . (49)

Therefore, the numerator of a - iBO in (45) is

14
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2L(a) - W(2a)2L(-a) =

ao(l + W) - 180(1 - W) - W[uo(l + W)t 180(1 -W )] =

(ao = 1.Bo)(l = Iwzl) = (ao - ‘iBO)[1 - INZ(Za)I] ? (50)

where we adopted the notational simplification W = W(2a) during the
manipulations. Thus, the denominator factor 1 - ,wz(Za)l in (45) is
necessary to scale the amplitude back up to its correct value of a, - iBO.

VALUE OF COEFFICIENT AS a >0

We want to investigate the behavior of coefficient a, ~ iy in (39)
as a » 0. (If we try to set a = 0, we get e 180 = 0/0, which is
indeterminate.) Accordingly, substitute expansions (23)-(24) into (39) and
simplify to obtain the expression

- i "2 " M1 - 1.8953;:;El£9. as a >0 (51
o T N T W i _ R = )
¥z - W) oW2 — W3

This result corroborates the claim made under (28) that 8, behaves as 1/a as
a » 0. That is, the optimum quadrature coefficient of the pure real tone gets
arbitrarily large as frequency a tends to zero.

If we combine (51) with the modelling function in (7), we have

o cos(ak) + B, sin(ak) ~ ay * aoak 5

Wl = Wl. Wl - WL
270 121 + 01 120 k as a»>0, (52)
WoWp — W] WoWp - g

which is precisely (26) and (27). Thus, the limit, as a » 0, of modeling (7)
is to fit the best constant plus linear trend to the data.

15
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FFT REALIZATION

For purposes of minimizing computations, we henceforth assume that the
weights have been normalized according to (42); that is, their sum equals
unity. This feature is incorporated in the following equations and the
resultant program.

MANIPULATION INTO FFT FORMS

According to (22), we are interested in evaluating B(a) in (44) over the
range 0 < a < w, where functions W and L are given by (17). Suppose then that
we focus attention on values of frequency a given by

2n

a=mg for 0 <mg (53)

N =

Integer M will be chqsen to be a power of 2, and is unrelated to N, the number
of data points. Then (17) yields

L(m gﬁ): §wk X, exp(-i2mmk/M) = L (m) , (54)
k

which is recognized as an M-size FFT of N nonzero real weighted data values

oy Xk’k'

At the same time, (17) also gives for the window

N(Zm 2—& Ewk exp(-i2n2mk /M) =
k

1

;§i wj/2 exp(=i12wmj /M) , (55)

J even

where we let j = 2k. Now if we define sequence

16
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d. = o (56)

then (55) becomes

w(Zm 2—q>= Zdj exp(-i2mmj/M) = oD'(m) . (57)
J

which is an M-size FFT of sequence {dj}.

Direct employment of (54) and (57) in (44) yields

2 * 2

ofn 20) _ o )| - re {9 (m) LZ(m)} -
( —M) 1 - ,ﬁ’z(m)!

Thus, if we evaluate the two FFTs for {I(m)} and 29(m)} in (54) and (57),

respectively, we have all the quantities necessary to determine B(m2x/M) for
0 <m< M/2.

TWO REAL FFT*s VIA ONE COMPLEX FFT

Since (54) and (57) constitute FFTs of real sequences, they are not
making full use of the capabilities of an FFT. To exploit the inherently
complex nature of this tool, let

Z W

K Fide for 1<k <N, (59)

k=

where sequence idk} was defined in (56). (Half of the real terms and half
of the imaginary terms are zero in (59).) Then the FFT of size M of sequence
(59) is

e Ezk exp(~i2amk/M) = £(m) + i &m) , (60)
k

where we presume that M > 2N. (Methods of circumventing this limitation are
given in [10].)

17
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Using the realness of sequences {x.}, fw}, Fd,}, it follows from
(54) and (57) that ‘

* *

FM-m) = fM-m) - iFM-m = Lm) - iDm) . (61)

Now combining (60) and (61), we have

2 £(m) Z(m) + 27 (M = m)

1]

]
(V2]
—
=3
~—
+
-
S
—
3
~—
-

28(m) = ~i[Z(m) =2 (M - m)]

Sy(m) - i 0,(m) , (62)

where the real sum and difference functions are defined as

S (m) = X(m) + X(M - m),
Sy(m) = Y(m) + Y(M - m),
D (m) = X(m) - X(M - m),
Dy(m) = Y(m) - Y(M - m), (63)

in terms of the real and imaginary parts of FFT output Z(m) in (60), namely,
Z(m) = X(m) + i Y(m) . (64)

Equation (62) accomplishes the decoupling of the FFT output Z(m) so as to
yield the two desired FFTs (m) and $(m) indicated in (54) and (57).
However, it is advantageous to continue with the breakdown of these two
complex sequences JL(m) and $(m), as done in (62), in terms of all the purely
real quantities given in (63). For upon substitution of (62) in desired
quantity B(m2x/M) in (58), we obtain the simplified form

2 + p° + +
o) SemL2 - 3,3 + D2 + 5, ()] * 25, (WD, 0y )
4 - (§§(m) + Di(m))

This latter form, which utilizes only real arithmetic, can be used only for
0 <m< M/2. The values for B(0+) and B(wn-) must come from (25) and (30),

respectively, with Wy = 1. A program for calculation of {B(mZnﬂﬂﬂ by means
of (56), (59), (60), (63), and (65) is furnished in the appendix.

18
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SELECTION OF FFT SIZE M

[t was presumed in (59) and (60) that FFT size M > 2N, where N is the
number of data points, in order that there be an array element in location M-1
available to receive data element idZN. However, there is an additional
reason for choosing M this large, having to do with the rate at which 8(a)
varies. The function B(a) in (44) depends critically on window function
W(2a). For equal weights, the results in (32) and (33) indicate that W(2a)
changes significantly in an interval of length «/N; in fact, this is the
separation between zero crossings. If order to track this rapid variation in
W, the increment 2w/M in frequency a in (53) and (58) must be smaller than
n/N. Thus, requirement M > 2N is a minimal requirement; in fact, it may be
advantageous to consider M several times larger than N, if storage and FFT
execution time are not excessive. Of course, the larger M is taken, the less

fine-grain interpolation will be required later.

For other weightings than flat, such as Hanning, where the effective
length of the weighting is foreshortened due to taper at the edges, the window
function W is broader, and the condition on M is alleviated somewhat.

However, M > 2N is a good rule of thumb to use in most cases.

INTERPOLATION PROCEDURE

When the complete set of values of B(m2x/M) for 0 < m < M/2 are
available, they are searched to find the maximum value. This maximum value
and the two neighboring bin outputs (m values) are then used in a parabolic
interpolation procedure to refine the estimate of the location of the best
value of frequency a and the corresponding maximum value of B(a).

Finally, this latter value of a can be used as a starting value for a
fine-grained search, again by means of parabolic interpolation, in the
neighborhood of this peak. These features are all incorporated in the
accompanying program for this search procedure, where direct use of (44) is
made; the previous FFT results are of no use in this final vernier
estimation. Along with each estimated frequency a, the corresponding
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coefficient ay - iso is also estimated and printed out. A few stages of

the vernier analysis suffice to give stable frequency estimates within the
accuracy of the computer used here.

20
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RESULTS

An example of N = 25 data points with FFT size M = 1024 is displayed in
figure 1, for the data sequence

x, = cos(k) +% sin(k) for 1<k <N (66)

and for the equal (or flat) weighting case of (32). The abscissa is
normalized frequency a = wA, and the ordinate is B(a) normalized relative to
its peak value. The low-level sidelobes in figure 1 are due to the nature of
the window W(2a), given by (33) for this case.

The Tine labeled INITIAL gives the bin number Js in which the peak is
located. This bin and the two adjacent ones are then interpolated by means of
a parabola to yield the initial value for B(a) labeled Big and the abscissa
estimate a = 1.0000445. This value of a is then employed in subroutine SUB B
to give the corresponding value B(a).

In the next two lines of the print out, the above value of a is perturbed
by + Delta, the function B(a) is computed, and parabolic interpolation is
again used on these three points to give the estimates labeled as REFINED
values. Then this refined a value is used to recompute B(a) and indicated as
the MAXIMUM value in the print out. Finally, the coefficient estimates « and
B, along with the minimum error, Emin’ are printed out.

The whole cycle of perturbation and parabolic interpolation is repeated
in the next separated four lines of print out, but this time with Delta
decreased by a factor of 10. This cycle is repeated one final time in each of
the figures presented. Prolonged repetition would result in excessive
round-of f error, due to the differencing of similar function values.

If the weighting is changed to Hanning,

2k
W =1- cos(Nf;—f) for 1<k<N, (67)
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the corresponding results are displayed in figure 2. The initial estimate is
a = .99999970, which is then refined to a = 1. The coefficients converge
rapidly to the correct values, and the figure displays no visible sidelobes
for this case of Hanning weighting. However, the window is broader.

The results of figures 3 and 4 correspond to figures 1 and 2,
respectively, except that white noise of power 1/12 has been added to the
waveform of (66). Now the Hanning weighting result in figure 4 also displays
sidelobes, due to random fitting of the particular noise samples utilized.
The refined values of a converge to a = .99318 and a = 1.00208, respectively,
which are not exactly correct, due to the additive noise. Also, the
coefficient a and B are considerably off their correct values, although the

Hanning results in figure 4 are better than for the flat weighting used in
figure 3.

Figures 5 and 6 are conducted for the two-tone data sequence

Xy = cos(k) + % sin(k) + cos(2k) , (68)

with no additive noise. The second peak near a = 2 in these figures is due to
the attempted match of model (7) to the data, when a is near 2. The program
locks onto the stronger tone and indicates its frequency as a = .99447 and

a = 1.00128, respectively. Again, the estimates of frequency a and
coefficients a and B8 are better for the Hanning weighting in figure 6 than for
the flat weighting in figure 5. This is due to the lower sidelobes of window
W(2a) in the Hanning case.
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Maximizing Function B(a)

G e —

S S —
0 PI/4 PI/2 3PI/z4 PI
Normalized Frequency a

HUMEER OF DATA POINTS M = 25
SIZE OF FFT M = 1824
IMITIAL: J= = 163 Eig = 621074542628 a = 1.00004447034 Elad =

E21ar4se
FEFIHNED a = 1.88B00080842¢
FEFIMED Edas = .821874530024
MASIMUM Bla) = 621874938049
Alpha = 9939333952689 Beta = .S5000R8E543203 Emin = 5.3531115123132E-18
FEFIMED a = 1.,80800008811
FEFIHED Evad = 5218743300849
MASIMUM BEdad = ,&6218743328049
Alpha = 993333339133 Beta = ,SHABGEGEA14326 Emin = 1,11822382463E-1¢6
REFIMED a = 1
FEFIHED Buad = 621874330049
MASIMUM Boad = (521874330049
Alpha = 1 Beta = 439929333394 Emin = 1.11822302463E-1%

Figure 1. Flat Weighting, No Noise
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Maximizing Function B(a)

0 PI/4 P1/2 3P1/4 PI
Normalized Frequency a

HUMEBER OF DATH POINTS M = 25

SIZE OF FFT M = 1024

IMITIAL: J= = 163 Big = .524753874556 a = .9999997@9554 Ela) = 62475287
REFIMED a = .339999999%@%

REFIMED Eca) = .524753873395

MAXIMUM Efad = .624753873395

Alpha = 1, 9R008000859 Beta = .43999999321 Emin = @

REFIMED a = .939999999999

FEFIHMED Efal = .524753873395

MAXIMUM Efad = 624753873395

Alpha = 1.00BQ80EAGG] Ecta = .439999999986 Emin =-1.11022302463E-16
REFIHED a = .999999393997

REFIMED Efa) = .524753873395

MAXIMUM Ead = 624753873395

Blpha = 1.00000000802 Beta = 43399999936 Emin = 1.11022302463E-16

Figure 2. Hanning Weighting, No Noise
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0! [\ //(\\\ﬁ_,—~\k

0 PI1/4 PIs2 3PI/4 PI

Normalized Frequency a

HUMEER OF DATA POINTS H = 25

SIZE OF FFT M = 1824

IMITIAL: J= = 182 PRig = 6371231236894 a = ,393221362141 Edar = ,557V1237Fc
FREFINED a = .9321787588655

FEFIMED Biay» = 5571258327483

MASIMUM Edad = 859125832776

Flpha = 101133876383 Feta = 2826802423948 Emin = £.333434423314E-82
FREFINED = = .3331737v73985

FEFIMED Ecad = 657123832776

MASIMUM Edad = 657125832776

Alpha =  1.113327235885 Eeta = Emin = &.333494432314E-032
FREFIMED a = ,33317877534

REFIMED Efa» = 8657123332776

MAAIMUM Blar = 657125832776

Alpha =  1.1132875£5851 Beta = L(EZ226@8351911 Emin = £.39349448214E-062

Figure 3. Flat Weighting, Addit

ive Noise

25



TR 7785

Maximizing Function B(a)

HUMEER
SIZE OF

IMITIAL:

REFIHELD
REFIHED
MASTMUN
Rlpha =

FEFIMED
REFIMED
MEAM T HILM
Alpha =

FEFIMED
FEFIHED
MAXTMUM
Alpha =

26

OF DRTAR POINMTS

__=-""'.-—

l—_._____‘_

M

FFT M = 1824

J= = 183 Big
a = 1,802883959
Biay) = 6439421
Biary = 6423431
1. 883585318553
a = 1.8820283359
Biar = 6439431
Bia)» = ,854392431
1. 0eZ85 15855
a = 1.8028383959
Ecar = 6433431
Biar = 6433431
1.88258516068324

PIs4 PI/2

3PI/4

Normalized Freguency a

PI

= 25
= 543943152613 & = 1.09020E8436495 Blad = .£4394317
96
78345
78345
Beta = 336231769342 Emin = S.15554813233E-02
€5
78345
78345
Beta = 396291765154 Emin = 5.15554013299E-02
66
75345
78345
Beta = 336291765211 Emin = 5.15554013239E-42

Figure 4. Hanning Weighting, Additive Noise



Maximizing Function B(a)

HUMEER
SIZE OF

INITIRL:

FEFIHED
FEFIHED
MASIMUM
Alpha =

FEFINED
FEFIHED
MAETMUM
Alpha =

REFIMED
FREFIHED
MAXTMUM
Alpha =

TR 7785

D.——-—::._.é.f_.\.ﬁ.l Y

X

PI/4 PIs2 3P1/4
Normalized Frequency a

OF DATA POINTS W = 25

Y}

FFT M = 1824
Jzo o= 182 PBig = 612387134756 a = 9345199387811 Eoad
a = .934474013322
Ecal = .5612385684082¢
Bialr = .612385684854
1.82244895852 Beta = 4177V2ees8318 Emin = .4393
a = .994474883397
Bla) = 5123855840854
Brar = 512385584054
1.83244337325 Eeta = 417726042805 Emin = .49%
a = 994474009277
Ecal) = 512385684054
Bial = 512385634854
1.03244837673 Beta = 41772041835 Emin = .433

Figure 5. Flat Weighting, Two Tones
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Maximizing function B(a)

.4 ‘
.2 /
0 b
0 PI’4 PI/2 3PI/4 PI

Normal ized Frequency a

HUMEBER OF DATH FOINTS H = 23

SIZE OF FFT M = 1824

IMITIAL: Jz = 183 PBig = .5Z33068E85241 a = 1.A0127468591 Edalr = [ E23358
FEFIHED a = 1.8812v551942

FEFIMED EBfa) = .5233568625382

MAXTMUKN BCad = 623356862582

Alpha = ATITE2416867 Eeta 17243 Emin 493958583458
FEFINED a = 1.881275513583

REFIHED EBtal = 623356882582

MASTMUM Blad = 523356882582

Aipha = 9237232415052 Beta SIITESIZEILFT Eminn = 49335856945
FEFIMED a = 1.868127551953

FEFINED Rta) = .623398862532

MAXIMUM Bcad) = 6233356862582

Flpha = I897824158328 BEeta 51724932832 Emin = HSES45
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Figure 6. Hanning Weighting, Two Tones
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SUMMARY

An automatic procedure for determining the best frequency, amplitude, and
phase of a real tone fitted to discrete real data has been devised and
programmed. It employs a single complex FFT for the initial search and then
refines the estimates by simple parabolic interpolation procedures. The size
M of the FFT is unrelated to the number N of data points, but should generally
be taken at least equal to 2N in order to guarantee adequate sampling in the
frequency search. The user can input any real weights {wk} of his choosing

into the program; these are then automatically normalized to make their sum
equal to unity.

The procedure is applicable to data records of any Tength N, without any
approximations. However, if there is considerable noise in the data, then
large N will be required in order to attain accurate estimates of the tone
frequency, amplitude, and phase. This is not a drawback of the least squares
procedure or program, but is a fundamental limitation of estimation capability
in the presence of noise.

No derivatives of any of the error functions to be extremized are
required in this approach. Instead, direct parabolic interpolation of the
appropriate sampled functions is employed and can be carried through several
stages to the desired degree of accuracy or until round-off error dominates.
For a very near 0 or =, the approximation of B(a) by a parabola may not be
adequate; special techniques may be required at these limits.

29/30
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APPENDIX
PROGRAM FOR ESTIMATION OF TONE PARAMETERS
Inputs required of the user are in

line 10: N, number of data points,
line 20: M, size of FFT.

The program is configured to accept up to N = 8000 data points and an FFT size
up to M = 16384. The user can also change the weighting from flat (in line
200) to whatever weighting is of interest. The appropriate window FFT is
undertaken automatically, by means of lines 290 and 560. The initial estimate
of a and the piot of B(a) are comb]eted by line 1010. If refined estimates of
a are desired, CONT EXECUTE must be performed, and can be repeated for
additional refinement.

The terminology DOUBLE denotes INTEGER variables in BASIC on the HP 9000
computer. Subroutine SUB B computes B(a) and coefficients a and 8 at any
frequency a of interest. Generation of data for the examples here is

accomplished in SUB Data, which must be replaced by the user to bring in his
own data.
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148
158
16@
176
180
19a
280
2lo
228
230
240
256
260
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2sa
2909
369
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320
338
248
350
3609
2709
386
3948
4908
410
420
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448
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518

32

H=25 !
M=1wmz4 !
FRIWNT “HUMEBER OF DATH FOINTS H
FRINT "SIZE OF FFT M ="3H

DIM Wols EBBBI

FEDIM Mol

LOUELE H,M,'%_ii,mfl'
IF mM>rz+*H THEHW 128
BEEFP
FRIWT
PRAUSE
T=2.,%*PI-M

FOR Mz=8 T0O M-4
Coz(Mz)=C050TsM=z2 !
MEXT Ms

MAT X=(8.)

MAT Y¥=(B.2>

S=4.

FOR K==1 TO M

Wk=1. !
W{Ks =Wk

S=5+Wk

HE®XT Ks

S=1, -5

Wi=Wz=8,.

FOR Ks==1 TO H

T=WC(kz)%*S !
W(Kz2=T !
Y(Ks+Ks)=T

T=T#*#Ks

Wi=W1+T !
W2=WH2+T*kK= !
NEXT K=

CALL DatadH, ddx33 !
So=To=Se=Te=En=9A.

FOR Ks=1 TO W STEP 2

Ti=xdiKs)

T2=W(Ks>*T1

HWiKzs2»=T2

So=So+T2

To=To+T2*ks

En=En+T1*T2

HEXT K=

FOR K==2 TO N STEP 2

T1=Xd(Ks2>

T2=W{Ks)»*T1

W(Ks)=T2

Se=S5e+T2

Te=Te+T2*kKs=s

En=En+T1+T2 !
HEXT Ks

“Mo<= ZHy INCRERSE M OR

HUMEBER OF DATA POIHNTS
SINZE mE ERES - b ZH REGUIKED

LDECRERSE

2

RUARTER-COSIME THELE

SPECIFY WEIGHTS, k=1:H

SCALE MWEIGHTS
SO THRT SUM = 1

MOMENTS OF

WEIGHTS

FILL UFP DATA ARREAY Hdol:H
TOTAL WEIGHTED EHERGY
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o
]
[n]

L MOMENTS
! OF
» ! WEIGHTELD
= ! IATH

+ +
I -
[n]

[ BTN
i
— 0

e UL (]

0 ) G A
— H
[} OO ()

—+

F

LM, Cos s, Hos, Yisnd

i =~ 1

||[_-.‘_‘|I|p—~|§|0—4
(S

D -

d2=W1#k1 ' EVALUATE Edar IH HdBiM-20
FEOL1#L -2 # WL 1 #LA+NIXLA*LAY T

ArMEr=0llt Ll -2, #Wl#L I #LAL +WIsLAt 2L G 0T

FOR Mz=1 TO M2-1

Ti=KiMs)

Ta=Hop

I
Ti=%{Mz2
T2=%{M~-M=2
Sw=T1+T2

Su# (2, —Sui PRl ECT, +5u0+T1+TL -T2
MEXT Ms
Eig=ii(n: | SEARCH FOR MAXIMUM

JE=k

FOR M==1 TD M2

T=HiMs

IF T<=Big THEN 218

BEig=T I MAXIMUM VALUE AHD
Jz=Mz ' LOCARTION IM ARRAY
HE®T HMs

IF J=>8 AHMD J=<MZ THEN 359

T=.3%eT1-T22-(Big+Big-T1-T2» | PARAEBDOLIC IMTERPOLATION
BEig=Big+.29%(T1-T20+T ' FOR MAXIMUM VALUE
Az=0J=+Tox2, #PI-NM I HHD LCOCATIOW OF MAXIMUM
CALL EBiM,Az, Wisd, ¥4+, Alpha, Beta, Bad

FRINT "IMNITIAL: ";"Js =";J=;" Eig =";Big;" a ="3;A
GINIT

FPLOTTER IS "GRAFHICS"

GRAFPHICS OH

WINDOW 8. ,M2,8.,Ba

GRID M2-3.,Ba 18,

FOR Mz=8 TO M2

FLOT M=, H¥oMso ' PLOT Ecay OWER [B,PI1
HEXT Ms

PEHUF

PALSE

GRAFHICS OFF

m

3" Efad =";B
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1924

1944

..
Dax
[l

SO W]
W 0D ~d T
o

— b A s e s
[u}
I G I

- 5
[}
AR

1228
12328
1240
1258
1260
1278
1288
1290
1388
1310
13208
13308
1348
1358
I8
1378
12248
1238
1489
1410
1429
1438
1449
1458

—

34

=

=
g
I
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—

=

. t IHITIAL SERRCH IHCREMEMT
Deltax. ' FIME-GEARIM SEARCH

C =-Delta,Wosr, Mdi*2 , Alpha, Beta, Bamd

E+Delta, Hosr, Hdi¢0,Alpha, Beta, Bap

-Bami {RBatBa-Bam-Bap

CTx<1. THEHW 1184

3 r— ,— —_— —
e
! o

S
HE

o —f T3
AME DD O

I
I

2=H3+T#Delta
Ba=Ba+,25#(Bap-Pam>=T

FREINT "REFIMED a =";HA=
FEINT "REFIMED E<a» =";Ea

CALL EBiH,Az,MC%, HdCs ,Alpha, Beta, Bay
FRINT "MASIMUM Edar =";Ba
Emin=En-EBa

FRINT "Rlpha = “";Alpha;s" b
PRINT

PRUSE

GOTO 10840

END

)

SUB BUDOUBLE H,REAL As,W(#),XdC#),Alpha,Beta,Bal
IOUELE k= 5
AZ=Az+As

Wr=Wi=Lr=Li=8.

FOR Ks=1 TO M

Tu=H{Ks)

Tx=Tw*xd{kz2

Ti=Az%Ks

T2=A2+*Ks

Wr=Wr+TwusxCOS{T2>

Hi=Wi-TwsSINCT2)

Lir=Lr+T=x#COS{T12

Li=Li-Tx*SIN(T12

HE®T K=

Ti={1.-Wr»=Lr

T2=01.+Wr2*Li

T=2. 1. - CHrslr+li £Mi 20

Alpha=(T1-Wi*Linr=T

Beta=(Wi*Lr-T23%T

Ba=Wi*Ler*Li

Bas=(T1*#Lr+T2%Li-Ba-Bay+*T

SUEBEHND

!

' MIHIMUM EMERGY
ta = “;RBetag" Emin ="3Emin

m

INT "REFIMED IMTERFOLATION IS BEYOWD EDGES OF SEARCH IMOCREMEHMT:

”;T
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N
ML

SUE Fft1<4¢DOUELE M,REAL Cosi#i, Hisd,¥isrr | Hi=2~14=15354; 9 5U
DOUELE M1,HZ, M3, H4,LoqZn,J, ! IMTEGERS 31 = 2,147,
DOUELE I1,12,1%,14,15,15,17,15,19,118,111,112,113,114,L0@:13;
IF H=1 THEH SUBEXIT

IF H>2 THEH 1580

A=ioBa+miL s

=
L)

H1=Hs9

HZ=N1+1

H3=MHZ+1

H4=HI+MN1
Log2n=1.4427*L0OGON?
FOR Iil=1 TO Logn
I2=2~¢Log2n-T112
I3=12+1I2

I4=H-13

FOR IS=1 TO I2
[6=C1S-10%T4+1

IF I5<=N2 THEN 1738
1 Al=-Cas(H4-TI6-10
1718 A2=-Cos(I&-H1-12
17208 GOTO 1758

1738 Al=Cos{I&5~-12

1748 AZ=-Cos(H3-I5-12
FOR Iv=8 TO HW-13 STEF I3
I8=1v7+15-1
I9=18+12

T1=%0C182

TE=H{I9

T3=YC(I8

Td=YI92

A3=T1-T2

A4=T2-T4
ALIE=TI+T2
YOIBI=T3+T4
AUTR0=A1*#A3-A2+A4
YCIFs=A1*A4+AZ*A3
HEXT 17

HEXT IS

HEST I1
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[1=Log2n+!

FOR I2=1 TO 14
Lilz=1a=

IF I2xLogzn THEH
Lela-to=2~011-120%
HEXT 12

k=8

FOR I1=1 TO Lt
FOR I2=I1 TO L¢t3

1368

STEP LG13)

FOR I3=I2 TO LC11x STER L1253
FOR I4=I3 TO LO1B» STEP LO112
FOR IS=I4 TO LOCSY STER L1840
FOR Ie=IS5 T LC3Y STEP L9
FOR I¥=Ie TO LIF» STEP LCSD
FOR I2=IF TO L{E) STEP LC(VTX
FOR I3=I2 TO LIS STERP LCED
FOR Ilg=I3 TO Lc4r STEFP LCSD
FOR I11=I1@ TO L«<3> STEP Lo43
FOR I12=I11 TO L&2> STEP LC3D
FOR I13=I12 TO L<C1> STERP LCZ3
FOR Il4=I13 TO L(B> STEP LC13
J=I14-1

IF K>J THEW 22409

A=X (KD
HOKI=KOTD

KCJr=H
A=Y CKD
YORa=Y (T2
Y(Ji=HR
F=K+1
HE=XT I14
HEXT I13
HE®T I12
NEXT I11
HEXT I1@
NEXT 19
HEXT I8
HEXT I7?
NEXT I8&
HEXT IS5
NERT I4
NEXT I3
HEXT 12
HEXT I1
SUREND

SUR Data(ODOUBLE H,REHAL Kd{=>2

DOUBLE K=
FOR Ks=1 TO H

AdCKs =005 s+ 55 IH K =)

HEXT Ks
SUBEMD
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